WRITTEN HOMEWORK \#8, DUE MAR 5, 2010

(1) (Chapter 17.9, \#23)

Verify that $\nabla \cdot \mathbf{E}=0$ for the electric field \mathbf{E} generated by a single particle of charge Q at the origin, given by Coulomb's Law

$$
\mathbf{E}=\frac{Q}{|\mathbf{x}|^{3}} \mathbf{x}
$$

where $\mathbf{x}=\langle x, y, z\rangle$.
(2) (Chapter 17.9, \#24) Use the Divergence Theorem to evaluate

$$
\iint_{S}\left(2 x+2 y+z^{2}\right) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=1$, with outward orientation.
(3) (Chapter 17.9, \#4) Let $\mathbf{F}=\langle x, y, z\rangle$, and let S be the unit sphere $x^{2}+y^{2}+$ $z^{2}=1$, with outward pointing orientation. Verify the Divergence Theorem by (a) calculating the surface integral of \mathbf{F} across S directly, and (b) computing the integral of $\nabla \cdot \mathbf{F}$ over the interior of S, and checking that the two answers you get are the same.
(4) (Chapter 17.8, \#5) Let $\mathbf{F}=\left\langle x y z, x y, x^{2} y z\right\rangle$. Let S be the the surface consisting of the top and four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward. Evaluate the surface integral of $\nabla \times \mathbf{F}$ across S. (Hint: you probably want to use Stokes' Theorem.)
(5) (Chapter 17.8, \#13) Let $\mathbf{F}=\left\langle y^{2}, x, z^{2}\right\rangle$. Let S be the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented upwards. Verify Stokes' Theorem for this \mathbf{F} and S by calculating (a) the surface integral of $\nabla \times \mathbf{F}$ across S directly, and (b) the line integral of \mathbf{F} along the boundary of S, and checking that your answers are the same.
(6) (Chapter 17.8, \#16) Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

depends only on the area of the region enclosed by C, and not on the shape of C or its location in the plane.

